
iOS Tic Tac Toe Game

John Robinson at Rowan University

Agenda – Day 3

• Introduction to Swift and Xcode

• Creating the Tic Tac Toe GUI

• Lunch Break

• Writing the Tic Tac Toe Game Code

• RAMP Wrap up

Process for
Developing

Mobile
Applications

• Design and Build the Graphical User Interface
(GUI)

• Create variables for the GUI objects the user
will interact with

• Add listeners that capture the events generated
by user interaction with GUI objects (i.e. Button
Click)

• Write event handlers to handle the events

Tic Tac Toe
GUI

Description

In the first part of this project, you will build the
GUI for a Tic-Tac-Toe game in Swift. You will use
imageViews to represent the game board and a
text control to display the status of the game at
the bottom of the screen. The buttons will have
no text on them when the game starts, but when
the user clicks on a button, it will display an X,
the computer will them move and turn the
appropriate button text to an 0. The same goes
if you use an imageView, no image will be
displayed, but when you click on a square, either
an x or o image will be displayed depending on
who's turn it is. The label will indicate whose
turn it is and when the game is over.

Tic Tac Toe GUI

Tic Tac Toe
Game

Description

In the second part of this project, you will write the code for
the Tic Tac Toe game in Swift. The game code consists of
modules listed below that performs the task given by its
name:

• void getComputerMove()

• void getUserMove()

• int checkForWinner()

• void displayBoard()

• Void NewGame()

The game will work by the user touching a square on the
gameboard that will place an X or depending on whose turn
it is. We will check for a winner after the user places their
mark on the board. If there is no winner, then we will
update the text label to say that it is the next persons turn.
We will also create a button for the user to reset the game.

Creating the
Game Board

(GUI)

Create a new Xcode Single View Application project
and name it “TicTacToe”.

Creating the
Game Board

(GUI)

Open MainStoryBoard.storyboard.

Drag a UIImageView to the window and resize it to be
approximately 300 x 300 and set its image to
Board image by using the Attributes Inspector.

Drag another UIImageView to the window and resize it to
80 x 80 then check the box for User Interaction Enabled.

Then copy and paste that 8 more times. Move those boxes
to be hovering over the spaces of the gameboard lining
them up.
Drag a UILabel to the window and position it under the
board.

Drag a UIButton to the window and rename the text to
Reset Game. The finished interface looks like the figure
shown on the next slide:

Creating the
Game Board

(GUI)

Writing the
Game Code

First thing you need to do is to create Outlets for all of the
imageViews similar to this:

@IBOutlet weak var s1: UIImageView!

Next create an Outlet for the label

@IBOutlet weak var whoseTurn: UILabel!

Next create the game variables:

//Game Variables

var mBoard: [String] = ["0", "1", "2", "3", "4", "5", "6", "7",
"8"]

var mBoardArray: [UIImageView] = [];
let BOARD_SIZE = 9

let HUMAN_PLAYER = "X"
let COMPUTER_PLAYER = "O"
var turn = "X"
var win = 0
var move = -1

Writing the
Game Code

Now that all of the GUI objects are wired, we can begin to write the game code.

You need to add listeners to the UIimageViews to capture when a click happens
to make a move:

let tapGesture1 = UITapGestureRecognizer(target: self, action:
#selector(ViewController.img1Clicked))

tapGesture1.numberOfTapsRequired = 1

s1.addGestureRecognizer(tapGesture1)

Then we add the event handlers to handle a click on a UIimageView, this
function sets the image for the UIimageView that was clicked and updates the
board array:

func img1Clicked(){

if(player == 1){
s1.image = #imageLiteral(resourceName: "x_img")
board[0] = "X"
player = 2

}

Writing the
Game Code

Finally, the code for the newGame function should reset everything:

@IBAction func NewGame(_ sender: UIButton) {

s1.image = nil

s2.image = nil

s3.image = nil

s4.image = nil

s5.image = nil

s6.image = nil

s7.image = nil

s8.image = nil

s9.image = nil

mBoard = ["1", "2", "3", "4", "5", "6", "7", "8", "9"]

infoLbl.text = "Player X's Turn"

win = 0

turn = HUMAN_PLAYER

}

