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Standing Waves on a String (approx. 1.5 hours) (2/21/11)   
Introduction 
A mechanical wave is a motion disturbance that propagates in some medium.  In air, disturbances 
propagate in the direction of motion and are called longitudinal waves.  Sound waves are longitudinal 
waves.  In solids, it is also possible for disturbances to propagate perpendicular to the direction of 
motion.  These are called transverse waves.  In this lab you will study “standing” transverse waves on a 
string bounded at both ends. 
 
Equipment: 
Strings: (approx. 1 hr.) 

• string vibrator 
with string 

• bench-edge clamp 
& threaded rod  

• mass set 
• 5g mass hanger 

• AC power supply 
(adjustable amplitude) 

• meter stick • bench-edge pulley • rod clamp 
For class as a whole: string sample; high-precision electronic balance; Phillips screw driver. 
NOTE:  Linear density of white pulley cord is about 3.84 x 10-4 

 
kg/m. 

Theory 

Common characteristics of waves are 
Waves:  

Wavelengthλ : the minimum distance for the pattern of the 
wave to be repeated. 
Frequency f : the number of times per second the wave 
motion is repeated (measured in Hertz: 1Hz=1/s). 
Period T: The time required to make one oscillation or for 
the wave to travel one wavelength. 
Speed v : the velocity of propagation of a traveling wave: 
v f= ⋅λ  
Amplitude A: The maximum size of the disturbance. 
A Node in a wave is a position where the size of the 
disturbance is zero. An anti-node is the position of 
maximum disturbance. 
 

A wave on a string is an example of a transverse wave: the disturbance in the string (displacement from 
a straight line) is transverse (perpendicular) to the direction of the string. The wave may be traveling 
down the length of the string or be a standing wave which oscillates in place. Waves on a string have 
characteristic frequencies which depend on the linear density of the string, 

Waves on a string:  

µ (i.e. mass per unit length), 
and the tension,τ , in the string. The speed of the wave in the string is given by: v = τ µ . Even though 
standing waves do not appear to travel along the string, their wavelength and frequency are still 
characterized byλ τ µ⋅ =f .     
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Figure 1: A standing wave oscillates in 
place at frequency, f. A traveling wave 
will propagate at speed, v. At any one 
point the disturbance oscillates with 
frequency, f, such that v f= ⋅λ  
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Resonance: 
Resonance occurs when the driving frequency creating waves matches a natural frequency of the 
bounded mechanical medium in which the waves propagate.  In a string with both ends fixed, 
standing waves can be supported only if there is an integer number of half wavelengths along the 
string (

  

L n= ⋅λ 2 ): in this case the ends of the string are at nodes which remain fixed.  The 
characteristic, or resonant frequencies of the string are then determined from the relationship: 
λ τ µ⋅ =f  

 
Procedure 
Mount a bench-edge pulley on one 
end of your lab bench and set up a 
vertical rod using a bench edge 
clamp located about 1.5 m from the 
pulley. Clamp the string vibrator 
rod onto the vertical rod and adjust 
its position such that the length of 
the (horizontal) string from the tip 
of the vibrator reed to the top of the 
pulley wheel is 1.33 m
    The vibrator uses an 
electromagnet which alternately 
attracts and repels a steel “reed”. The magnet operates using AC line voltage, so its fundamental driving 
frequency is 60 Hz.  However, there are always low amplitude “harmonics” presents in 
electromechanical systems.  So, under certain circumstances, a harmonic of 60 Hz (i.e. 120 Hz, 180 Hz, 
… etc.) may excite a standing wave on your string.  Discard such data unless otherwise instructed.  

. (See Fig. 2.)   

Your instructor may want you to measure and record the mass m and length L of a piece of string like 
the string on your vibrator and calculate its linear density in kg per meter.  Otherwise, use 3.84 x 10-4 

Attach a 5 g mass hanger to the end of the string hanging over the pulley.  This will apply a 
tension 

kg/m. 

τ = Mg  to the string, where M is the mass of the hanger. (The mass of the string may be 
considered negligible.)  Record the length (L) of the string between its fixed ends (i.e. from the vibrator 
to the pulley).  Plug the vibrator into the variable voltage 60 Hz power supply and turn the power on to 
full amplitude.  While watching the string for the occurrence of standing waves, add mass to the hanger, 
increasing it 1 g at a time.  Adjust the mass on the hanger so you can clearly see standing waves (i.e. 
nodes and anti-nodes) occurring.  Try to produce a good stable standing wave pattern on the string by 
adding or subtracting mass to or from the mass hanger.  (Hint:  See if you can get 8 loops (i.e. anti-
nodes) by placing about 10 g on your 5 g hanger.)  If your reed is clanging noisily and your nodes and 
anti-nodes are unstable it may help to slowly decrease the voltage output of your power supply to get a 
quieter, more stable pattern.  If you’ve gotten a good pattern with stable, clearly discernable nodes, 
measure Ln

Theoretically, the velocity of traveling waves on the string should be: 

, the distance between the node on the top of the pulley and the node closest to the vibrating 
reed.  (Although the end of the string attached to the reed cannot be exactly at a true node, since the reed 
is typically vibrating with amplitude of at least 1 or 2 mm, it may be “close enough” in this particular 
case to consider it to be a node point.)  Turn your power supply off (to prevent over heating of the 
vibrator electromagnet) and record your data in the table on the last page.   

v = τ µ  , where 
τ =tension and µ =mass of string/length.  Standing waves can be created between points a distance Ln

2λnLn =
 

apart when there is an integer number of half-wavelengths between them i.e. .  For a fixed 
frequency, the tension in the string can be varied to produce standing waves of different wavelengths.  
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Figure 2: Standing Waves on Vibrating String 
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Combining the preceding equations we find that standing waves should be excited on the string when 
the tension satisfies τn=4µf2

nL 2/n2

      Experiment by applying or removing tension to or from the string (i.e slowly, carefully pull down or 
lift up on the mass hanger) and observe how different standing wavelengths can be excited as the tension 
varies.  (Have a lab partner hold a contrasting object behind the string if it helps you see it better.)  

.  

Record your (qualitative) observations.
     With tension adjusted so a number of half-wavelengths are excited (add or subtract masses to hold 
the tension) move your finger along the string and observe what happens to the standing waves. 

 How does the wavelength vary with tension?  

Record 
your (qualitative) observations
     Now investigate the occurrence of standing waves quantitatively and systematically.  Starting from 
the conditions you had previously when you created 8 anti-nodes, increase the tension by incrementally 
adding mass to the hanger until you’ve created 7 antinodes and record you data in the table as before.  
Continue in this way, creating 6, 5, 4, 3 and 2 clearly defined anti-nodes and record your data.  (This 
will take patience and careful observation and adjustments!)  For each such situation, record the number 
of half-wavelengths, measure L

. What happens if your finger is on a node?  On an anti-node? 

n

 Show that:

, and calculate the wavelength as described in the data table. 

λ
µ

τ
µ

= = =
1

f
g

f
M C M , where C is a constant. In your report explain why C 

should be a constant for this experiment.
     Use the computer (Excel or other program) to plot standing wavelength versus the square root of total 
hanging mass and determine whether the relationship is a good fit to a straight line. 

  

Discuss your results
     Find the slope of the line (using the computer) and determine the agreement with the theoretical 
prediction: (You will have to make sure your units are the same when you make your comparison.) 

. 

Conclusions: 
Discuss the nature of standing waves and how they relate to unbounded propagating waves. 
 
 
 
 
 
 
Waves on a string: 
Mass m of piece of string:  
Total length L of a piece of string: linear density: µ = m/L= 
Length between pulley contact point and reed attachment point (L):             (should be 1.33m)  
Total number of 
observed loops n

Suspended Mass 
(total), M T 

Measured length for n 
loops (Ln

Wavelength 
) λ n=2 (Ln

M
/n) 

 

     
     
     
     
     
     
     
     
Include graph with axes labeled (including units) and analysis shown. 
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Slope of graph of λ vs. M :  
Theoretical Prediction: C

g
f

=
µ

  

Percent Discrepancy:  
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