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Blackbody Radiation:  Computer-Lab 
 
 We have discussed examples of modern physics which contradict our classical thoughts 
about the way nature behaves.  It is important to recognize that our classical way of thinking is 
correct but only valid in specific cases.  For example, classical mechanics is correct when the 
velocity of an object under consideration is slow with respect to the speed of light.  Special 
relativity is a more general formalism.  We have also discussed electromagnetic radiation.  Over 
the years, our experiences have firmly convinced us that radiation behaves as a wave. However, 
when we magnify our perspective so that we are looking at individual events on a microscopic 
level such as the case where an electron is released from a polished metallic surface, we find that 
light must be considered as a particle, i.e. a photon.  A photon represents the minimum energy 
that can be transferred by light at a given wavelength or frequency.   Ultimately, it must be 
accepted that  light behaves as both a wave and a particle dependent only on the way we probe 
it.  Here the limits of use of one formalism over another is not as clear. So our classical idea of 
waves is valid if we perform an experiment where the wavelike nature is revealed. 
 
Energy emitted from an object 
 
 Typically, when we look at an object we observe reflected light.  At room temperature, 
the radiated light is infrared and not in the visible spectrum.  As the temperature of the object 
increases, we finally see a red glow which is radiated light.  If the temperature continues to 
increase, the visible radiated light tends to shorter wavelengths and we discern a change in color.  
To analyze this situation directly is difficult but by looking at the ideal case of a blackbody, 
analysis is possible since we only need consider the radiated light and not the reflected light. 
 
 As it turns out, blackbody radiation is an example where we must consider the quantum 
nature of radiation.  A blackbody is an object which does not reflect light, i.e. a perfect absorber.  
A nearly ideal blackbody is the hole in a cavity containing electromagnetic radiation. Any light 
which is incident on this hole is absorbed in the sense that through multiple reflections inside the 
cavity, the energy is eventually absorbed and the light has a negligible chance of emerging from 
the hole as reflected light.  The radiation which does emerge from the hole is a sampling of the 
light which is radiated from the walls of the cavity.  
 
 Any wave is caused by a vibrating object.  The frequency of the wave is determined by 
the frequency of vibration.  Electromagnetic waves are created by vibrating electric charges 
which are attached to atoms. The frequency at which an atom vibrates is related to the 
temperature of the wall since the temperature is a measure of the kinetic energy of the atom. The 
spectrum of wavelengths radiated from a blackbody can not be predicted from classical 
electromagnetic and thermodynamic considerations.  This is demonstrated by the failure of the 
Rayleigh-Jeans formula:  
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which is derived from these classical concepts to account for the radiancy ( the electromagnetic 
energy intensity per wavelength) as measured using the experimental apparatus schematically 



Modern Physics-Blackbody Radiation Exercise      2 
  
 
 
represented on p78 of your text. This classical expression especially fails to predict the high 
frequency range of the observed radiation spectrum.   
 
 Max Planck improved the modeling of the measured data by assuming that the oscillating 
atoms in the walls of the cavity could only absorb and radiate energy in discrete bundles and 
forcing the upper limit on the energy that could be radiated to be the thermal energy of the atom, 
kT.  This placed a limit on the highest frequency which could be emitted and removed one of the 
major downfalls of the Rayleigh-Jeans formalism, the infinity at high frequencies.  Planck’s 
result for the radiancy is: 
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 Each of these expressions demonstrate that the intensity at a given wavelength depends 
only on the temperature, T. In what follows you will numerically confirm that Planck’s formula  
accurately predicts the two following laws: 
 
Stephan’s Law:    I(T) = σT4            (σ = 5.67 x 10-8 W/m2K4) 
Wien’s Displacement Law:  λmaxT = 2.898x10-3mK      (m stands for meter! not milli) 
 
 
Part I: Comparing Radiancy of Rayleigh-Jeans with that of Planck for T=100 K: 
Create Data in Excel 
 

1. Open Excel program.  
2. Click on A2, Enter 1 
3. Go to the A3 Field, enter:  = A1+1 in then hit Enter Button 
4. Select the A2 field, move your cursor to the lower right edge of the field till it becomes a 

black cross, click and drag it down to A201 (field should have value 200). 
5. Click on B2 and enter: =A2*1e-6. Again drag it down to B201. 

(Creates wavelength in meter) 
6. Click on C2 and enter: =2.6e-14*100/(B2^4)   Click and drag down to C201. 

(Creates y-axis Rayleigh-Jeans radiancy). Hereby, 2.6e-14 stands for the constant 2πck, 
100 for T=100 K and B2 for the wavelength. [NOTE: if you see a #NUM sign, don’t be 
shocked, it says the program got too high a number. Keep on with the instructions].  

7. Click on D2 and enter: =3.71e-16/(B2^5)/(EXP(0.01425/(B2*100))-1). Click and drag 
down to D201 (Creates y-axis for Planck’s radiancy) 

8. Label your columns in row 1. 
 Check your two columns: the Rayleigh-Jeans’ radiancy (column C) should have a high value 

at low wavelength and drop continuously. The Planck’s radiancy should start low and have a 
maximum at a certain wavelength. 
Plot the Radiancy curves vs wavelength 
 
Click on “Chart Wizard”-symbol from the tools, 
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1. choose a XY scatter (type without markers), enter next. 
2. change from data value to series; choose y-axis in following format: 

=Sheet1!$D$2:$D$201 [means data point from sheet1 from column D, point 1 to 201; 
choose x-axis similar:  =Sheet1!$B$2:$B$201; name curve “Planck”; add another curve 
with same x-axis but C-colums as y-axis, name “Rayleigh”. [your graph might look 
strange now, don’t worry, the y-scale is still wrong]. 

3. Go to “titles” and give the graph and the axis the correct names. 
4. Place chart as new Sheet! [You can change between sheet by the clicking on the names at 

the lower left corner]. 
5. Now, your graph looks not very good, since it is in auto-scale mode of the axis and the y-

values of Raleigh-Jeans are very high for small wavelength (remember: UV-catastrophy). 
6. Click on the numbers on the y-axis, go to “scale” and reduce “maximum” to 300000 and 

“minimum” to zero. Now both graphs should be well visible. 
 

 Print your Chart and add on the print-out the temperature. 
 Describe the shapes of the curves and compare their dependence on wavelength. 

 
 
Part II: Wien’s Displacement law 

1. Determine from the data in column D the wavelength at which the radiancy is at 
maximum (look for the highest value in column D and note wavelength at same point 
from column).  

2. Note the wavelength and the temperature (T=100K).  
3. Create additional columns using Planck’s radiation law for temperatures T=30K, 50K, 

300K and 500K.  
4. For each wavelength determine the wavelength at which the radiancy is maximal. 
5. Create on a new sheet a table with your five temperatures and wavelength. 
6. Make a new column for the product λmax * T. All of the numbers in that column should 

be about equal and have a value of 2.9 x 10-3.  
 

 Compare your results with the accepted value. Discuss possible errors. 
 

 Plot and Print out a chart with three graphs of radiancy versus temperature for different 
temperatures. 
 
 
 
Part III: Stefan’s law: 
We want to verify now, that the total intensity, which is the integral over the radiancy R(λ), 
follows the Stefan’s law:  I = σT4.  

1. Go back to sheet 1, add all the data for the columns, in which you have Planck’s 
radiation curves for different temperatures. This will be your total intensity. [for 
example: go to cell D205, enter: =SUM(D2:D201)]. Only adding the data, however, will 
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not give you the correct value for the intensity, since numerically the integral and the 
sum are somewhat different: 
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2. To get the correct I(T) value, you have to multiply your sum by ∆λ, which is the step 
width of the wave length (1e-6). 

3. Note the five values for the five temperatures and make a new table on a new sheet.  
4. Compute on a third column the quotient: I/T4 . This should give you a constant number 

for all five temperature ranges.  
5. Compare that value with the value of the Stefan-Boltzmann constant, which is σ = 

5.7x10-8 W/m2K4. 
 

 Compare your results and discuss eventual sources of error, if you get any deviations. 
 
 
 
 
Questions. 
 
1. What wavelength (not a numerical value) do you observe with your  eyes at high 
temperatures? 
 
 
 
 
 
 
2.  Estimate the temperature at which you would expect the dominant wavelength to be about 
700nm.  
 
 
 
 
 
 
3. At what wavelength does the Sun emit its peak radiancy?  The temperature of the Sun is about 
6000K.  How does this compare with the peak sensitivity of the human eye? 
 
 
 
 


