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Hooke's Law and Simple Harmonic Motion (approx. 2 hr) (7/20/11) 

Introduction 
The force applied by an ideal spring is governed by Hooke’s Law: F = -kx.  Because the force is 
proportional to displacement of the spring from its equilibrium position, a mass attached to the 
spring will undergo simple harmonic motion. In this lab we will verify Hooke’s Law and learn 
about simple harmonic motion. The motion of the spring will be compared to motion of a 
pendulum.  Damped harmonic motion may also be investigated. 
Equipment 

• spring 
• motion sensor 
• meter stick 

• vertical rod (51”) 
• masking tape 
• pendulum clamp 

• cardboard dampener 
• pendulum bob 
• bench-edge clamp 

• keyhole 
mass set 

• keyhole 
mass hanger  

For class as a whole: beam balance 
 
Theory and Overview 
Hooke’s Law 
The first part of this experiment is designed to verify Hooke's law.  For a mass hanging from  a 
spring, Hooke's law states that the force, F, applied to the hanging mass is proportional to the 
displacement, (x-x0

( )F k x - x 0= − ⋅
), of the mass from its equilibrium position without the mass, that is, 

, 
where k is the spring constant. The minus sign occurs because the force is opposite to the 
direction of displacement. Hooke's law can be used to calculate the spring constant, k, if the 
force and displacement from equilibrium resulting from it have are known. 

Simple Harmonic Motion 
In the second part of the lab we will verify that motion under this force is “simple harmonic 
motion” with a period, T, of  

T 2
m
k

= ⋅π  

Thus, k can also be determined by measuring the mass and its period of oscillation. 

Small Oscillations of a Simple Pendulum 
In the third part of the lab we will verify the theoretical prediction that a simple pendulum (i.e. 
mass hanging from a string) should exhibit simple harmonic motion for small oscillations and we 
investigate the dependence of the period of a simple pendulum on its length. 

Damped Oscillations 
The forth part of the lab provides an opportunity to investigate the effect of a damping force (in 
this case, air drag) on simple harmonic motion. 
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Procedure 

In this part, the DataStudio program is used with the motion sensor to measure the displacement 
of different masses.  If x

Part 1: Verifying Hooke’s Law and Measuring the Spring Constant  

0 is the equilibrium position of the spring (no masses added), then the 
displacement is (x-x0

( )F(x) k x - x k x k x0 0= − ⋅ = − ⋅ + ⋅

), where “x” is the position measured by the motion sensor (see Figure 1). 
According to Hooke’s Law, the force applied by the spring is:  

. 
Graphing software will be used to make a plot of F versus x.  Hooke's law is verified if F vs. x is 
a straight line.  The slope of this line represents the spring constant k (the intercept will be kx0

Data collection 
). 

DO NOT LET MASSES DROP ONTO THE MOTION DETECTOR (secure in place) 
In this part you will use the motion sensor to measure 

distances for stationary masses.   
Set up a spring-mass system as shown in Figure 1 

with the spring hanging from the end of the 
pendulum clamp beyond the edge of the table and 
the motion sensor on the floor.  First, use your 
pendulum bob as a plumb bob to position the 
motion sensor directly beneath the mass hanger. 

On your computer desktop, click on DataStudio and 

In the Experimental Set-up window choose 
Create Experiment. 

Connect the motion sensor to the interface as shown, 
set it on the narrow beam setting, and set the 
sensor trigger rate to 50. (Double click on the 
displayed sensor icon attached to the interface.)  

Motion 
Sensor. 

To create a graph, double click on the “Graph” icon 
in the “Displays” menu and choose “Position” as 
the Data Source for your graph. 

Clicking Start and Stop will start and stop the motion sensor. Make sure the position you are 
measuring is the distance to the mass hanger on the spring by giving it a slight vertical 
motion. (You can also use your meter stick.)  By letting the software run while the mass is 
stationary you will be able to get average position readings for different suspended masses.  

First, measure the position of the mass hanger with the maximum (500g) mass on it.  Click Start 
to collect data.  The position as a function of time should be a horizontal line.  Click Stop to 
stop the motion sensor. Estimate position by reading the graph’s axis. (Note: You can change 
the scale of the axis by clicking and dragging on the axis.) Record the position in Table 1. 

Repeat the measurement of position for different masses by placing the listed masses (Table 1) 
on the hanger, and recording the mean position values. 

Express F in terms of Newtons and fill out the last column in Table 1. 
Input F and x from Table 1 into a graphing program.  Make a plot of F vs x.  F vs. x is expected 

to be linear with slope corresponding to the spring constant k. Determine the slope by using a 
linear fit (trend line).  If your plot does not seem to fit a straight line it may be because your 
masses are too close or too far from the sensor at one end or the other. 

 
          
 
 

 
 

 
  

Motion Sensor 

x 

(x-x0) 

 
Figure 1: Mass on Spring with 
Motion Sensor. 
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This part is designed to verify that the motion of the oscillating mass on the spring is simple 
harmonic motion with a period of  

Part 2: An Oscillating Mass Undergoing Simple Harmonic Motion 

T = 2π
m
k  

Because of the mass contribution from the spring, m in this equation consists of the mass of the 
suspended weight mW  and the effective mass of the spring Me . The above equation can be 
written as 

    (Equation 1) 

T = 2π  
m  +  M

k
 W e ,     (Equation 2) 

or, by squaring both sides: 

T2  = k
4π2

 mW  + k
4π2

 

Equation (3) suggests that T

Me     (Equation 3) 

2  vs. mW  is linear with slope of k  
4π2

 and intercept equal to k
4π2

 Me .   

Thus, both the spring constant, k, and the effective mass of the spring, Me  , can be determined 
from the T  

 

2 vs. mW   graph.  The k derived in this method should be very close to the one 
obtained by the Hooke's law method.  The ratio of Me  to the actual mass of the spring, Ms  , is 

always less than one. 

Data collection 
The same set-up is used in this part. 
Add 100 grams to the hanger.  

1. Give the mass a small initial displacement from equilibrium and release it. 
2. Click Start to collect data.  The position as a function of time should look like a sine 

function. (That is precisely what is meant by simple harmonic motion!)  
3. Click Stop to stop the motion sensor. 
4. Change the scale of your vertical axis (click and drag on the numbers) until you see your 

graph well. If your data does not look like a nice sine wave you may need to adjust the 
alignment of your apparatus or the data collection (i.e. trigger) rate. 

 
Repeat steps 1-4 with different weights as listed in Table 2, and record times to Table 2. 
Calculate T and T2  
Input T

(See Fig. 2 below.) and enter them in Table 2.   
2   and mW

Make a plot of T
 to your graphing program.  (Don’t forget to convert grams to kilograms!) 

2  
Calculate the spring constant k and compare it with the value obtained in Part 1.  Calculate M

 vs. mW .  Find the slope and intercept from your graph. 
e

Measure the mass, M, of your spring.  Calculate the ratio M
. 

e/M. 
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Note:  For the above example the number of oscillations (full cycles) is n=4. 

 

In this part, we verify an expression for the period of a pendulum. For small angles of oscillation, 
the torque on the pendulum bob is proportional to the angle of displacement. This means that the 
pendulum should also undergo simple harmonic motion. We shall measure the period of 
oscillation and find out how it is related to the length of the pendulum (i.e. the distance from the 
attachment point of the string to the center of mass of the pendulum bob). 

Part 3: Small Oscillations of a Simple Pendulum 

Data Collection: 
Set up a simple pendulum and position the ultrasonic motion sensor to monitor its horizontal 

motion.  Position the sensor close enough to the pendulum to get good, smooth graphs. 
Displace the bob a small distance from equilibrium in the line of the sensor beam and release it.  
Measure the period of the pendulum for several different string lengths (Table 3) 
Determine the relationship between the period of the pendulum and its length by plotting both 

period, T, versus length, and T2

Your instructor (or a textbook) can provide the complete theoretical relationship between period 
and length for small angles of oscillation. 

 versus length and seeing which plot best fits a straight line. 

 

Part 4: Damped Oscillations 
If a large piece of cardboard with a slot in it is placed on the hanger under the mass in the 
mass/spring setup, air resistance to the motion of the mass as it oscillates will be greatly 
increased.  Experiment with different masses to get a good position versus time graph that has 
obviously decreasing amplitude in a reasonably short time.  Investigate how this damping force 
acts to decrease the amplitude of the oscillations over time.  Specifically, try to determine if the 
decrease in amplitude with time can be described reasonably well by a simple function.   

(optional? – Ask your instructor.) 

Support your conclusions with data and graphs.  
 

           

 

xMax 

time One Period, T 

Position, x 

n Periods, n T 

 

Figure 2: Simple harmonic motion: the mass oscillates like a sin function: x(t) = x
2
TMax sin
π

t
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Table 1: Verifying Hooke’s Law 

M 
(mass on the hanger) 

Position, 
x 

For a stationary mass, 
F ( = Mg)  g=9.8m/s

0 
2 

      
100 g=0.100 kg   
200 g=0.200 kg   
300 g=0.300 kg   
400 g=0.400 kg   
500 g=0.500 kg   
 
Spring constant from method 1 = _______________________________ 
 
Table 2: Oscillation of a Mass on a Spring 

mw (grams) t1  * t2  n  T = (t2 -t1 T)/n 2

50 + 100 
  

     
50 + 200      
50 + 300      
50 + 400      
50 + 500      
*where 50 grams is the mass of the mass hanger. 
 
Spring constant from method 2 = ______________________________ 

Discussion: (continue on separate pages as needed) 
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Table 3: Small Oscillations of a Pendulum 
Length 

(meters) 

t1  t2  n  T 
(t2  - t1 )/n 

T2

0.2 

  

     
0.4      
0.6      
0.8      
1.0      

      
      

 

Discussion (continue on separate pages as needed): 
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