Franck Hertz Critical Potential Lab

Equipment:

The two Pasco Franck Hertz units with power sources The two older Neon Franck Hertz tubes and power supplies, cables and cords

This lab has two parts, Part 1 is quantitative and uses the newer Pasco units, Part 2 is qualitative/conceptual and uses the older Neon tubes. There are two sets of equipment for each part, so groups will take turns. While one group is doing Part 1, the other will do Part 2, etc.

Background:

This experiment will demonstrate the 1926 Nobel Prize Winning Franck-Hertz Experiment, which demonstrates the existence of discrete energy levels in atoms.

An anode and cathode are placed in a tube which contains a gas- in this lab you will use Neon and Argon tubes. Electrons emitted from the cathode are accelerated toward the anode and their kinetic energy increases linearly with distance. Two collision processes happen in tube. Firstly, the electrons suffer *elastic collisions* with the neon/argon atoms; these are collisions in which the sum of the kinetic energies of the electron and of the gas atoms is conserved. In such collisions, the electron loses a very small fraction of its energy. Therefore the electron has a kinetic energy approximately equal to eV, where ΔV is the potential difference between grid and cathode. The tube includes a small retarding voltage before the anode, this small retarding voltage (for example 0.5 V) does not prevent them from being collected at the anode, provided that $\Delta V > 0.5$ V. If, on the other hand, an electron suffers an *inelastic collision* with a gas atom in which it loses nearly all its energy, it will be turned around by the retarding field between the grid and anode and will not participate in the anode current I_A.

As the voltage difference between the cathode and grid is increased (the acceleration voltage), the anode current increases until a critical voltage is reached, at which point the current decreases sharply. We interpret this decrease to be the result of inelastic collisions that evidently occur as soon as the electron kinetic energy K reaches a threshold energy. An electron with this KE loses all its energy to an atom, exciting an electron in the atom from one discrete energy level to a higher one. The result is a dip in the anode current. As the voltage is further increased to 0.5 V + the exciting potential, an electron has sufficient energy to overcome the retarding voltage, even after making an inelastic collisions, and another dip in the anode current curve occurs. By collecting the current and measuring the distance between "dips" we can measure the critical potential to excite the Argon or Neon atoms.

Another important result from this experiment is the light of a corresponding wavelength is observed to come from the tube as soon as V becomes greater than

the exciting potential. Evidently, when an electron in a Neon atom is excited to an energy level above its normal energy level, it returns to its normal state by radiating light. This is true for Argon as well, except that the photons it emits are not in the visible range, and so you cannot see the emitted radiation.

In this lab you will observe the emitted light with the Neon tubes in Part 2, and perform quantitative measurements in Part 1 of the critical potential (or resonance voltage) by collecting the anode current with the Argon tubes and analyzing how the current varies with acceleration voltage.

The figure below displays a typical measurement of the Argon tube anode current, I_A , as a function of the accelerating voltage. As soon as the acceleration voltage exceeds the retarding voltage the current increases, however the current sharply decreases for a voltage U_1 and then increases up to U_2 , and then this pattern recurs. Interpretation of these observations is successful with the following assumptions:

- Having reached energy of about e• U₀, electrons can transmit their kinetic energy to a discrete excitement state of the argon atoms.
- If their energy is twice the required value, or 2 e•U₀, they can collide two times inelastically and similarly for higher voltages.
- As a matter of fact, a strong line can be found for emission and absorption corresponding to an energy of $e \cdot U_0$, the excitation energy of argon, in the optical spectrum (108.1 nm).

In the figure, the resonance voltage (critical potential) is denoted by U_0 . Remembering that the electron's energy will be equal to the energy of the photon emitted, we have:

$$e \cdot U_0 = hf = hc/\lambda$$

which will allow you to find h given the known wavelength of the transition

Procedure Part 1:

- Access the Pasco Manual- included in its entirety at the end of this handout or also found on their website.
- Connect the apparatus following the diagram and instructions beginning on Page 7 of the PASCO manual. **Use the settings on the Argon tube itself** rather than the defaults when appropriate.
- NEVER TURN THE ACCELERATION VOLTAGE ABOVE 70!!! YOU CAN DAMAGE THE TUBE! IF AT ANY POINT YOU SEE A SHARP INCREASE IN COLLECTED CURRENT IMMEDIATELTY TURN THE ACCELERATION VOLTAGE DOWN AND GET ASSISTANCE.
- Perform **Experimental Procedure 2**, which begins on page 14.
- **NOTE, download the capstone file from their website** so you do not need to do the software setup: Scroll down to the very bottom of the page: https://www.pasco.com/prodCompare/franck-hertz-apparatus/index.cfm

Procedure Part 2:

- Connect the color coded outputs of the operating unit with the color coded inputs of the Ne tube. Make sure the operating unit is from the same company as the Ne tube.
- The indirectly heated cathode (green knob) requires a warm-up time of about 90 seconds after switching on the operating unit, the room should be somewhat darkened
- Make sure the switch is set to Manual and not Ramp for the acceleration voltage on the operating unit
- Slowly turn up the acceleration voltage, make note of roughly at which voltage the plane of orange light appears.
- Continue to increase acceleration voltage and take note of your observations as the voltage varies, adjust heating current if needed.

If the acceleration voltage is slowly raised from an initial value of zero, a glowing orange layer starts to appear at the anode around 20 V. If we were measuring the current collected it would begin to decrease. As the anode voltage is raised further, the glow moves down toward the cathode. If we were monitoring the collected current it would reach a minimum when the glowing layer detaches from the anode. As the anode voltage is raised more, a dark zone appears, followed by a second glowing layer (at about 40 V). In all, a maximum of two dark zones and three glowing layers may be observed (layered positive column).

These layers are created as follows: Electrons emerging from the cathode begin their trajectory at a velocity close to zero, and are all accelerated by the same field,

meaning that they also all reach the energy necessary for excitation in the same cross section (same distance from the cathode). Excitation therefore occurs in a layer. In the process, however, all of the electrons lose their energy, begin again with a velocity close to zero, and so on.

The voltage difference between the first and second maximum indicates which excited state the Neon electrons are excited to. You will find that this value is consistent with the energy diagram for neon. The transitions between these two groups of excited states lie in the visible region, and are responsible for the appearance of glowing layers.

TO BE HANDED IN:

Part 1:

- The PASCO graph for Argon
- Explain in words what is plotted on the graph. What is the Franck-Hertz signal and why does the Franck- Hertz signal (FH signal) show dips for certain acceleration voltages?
- The critical potential for Argon in eV and how you calculated/derived that value using the graph. Include the data/measurements you used.
- Use your measured critical potential (resonance voltage) for Argon to calculate an experimental value for Planck's constant, do not forget %error and a discussion of error sources.

Part 2:

Describe the qualitative observations when viewing the Neon tube, specifically:

- Why do you see light from the Neon tube? How is it created? Explain.
- Why does the light from the tube have a vertical pattern (why do you see the distinct, approximately planar, layers)

Franck-Hertz Experiment Model SE-9639

Brolight Technology Co., Ltd

Table of Contents

Equipment List	· - 1
Limited Warranty and Limitation of Liability	- 2
Safety Information	- 2
Installation and Maintenance	- 3
Introduction	- 5
Principle of the Experiment	- 5
Experiment Procedure 1	· 11
Experiment Procedure 2	14
Appendix A: General Specifications	18
Appendix B: Teacher's Notes	19
Appendix C: Technical Support, Copyright, Warranty	23
Product End of Life Disposal Instructions	23

Franck-Hertz Experiment

SE-9639

Equipment List

Inc	luded Equipment	Model	Quantity
1.	Tunable DC (Constant Voltage) Power Supply I	SE-6615	1
2.	Tunable DC (Constant Voltage) Power Supply II	SE-9644	1
3.	DC Current Amplifier	SE-6621	1
4.	Argon Tube Enclosure with Argon Tube	SE-9650	1
5.	Connecting cable, 850 mm, red	EM-9740	Set of 5
6.	Connecting cable, 850 mm, black	EM-9745	Set of 5
7.	Power Cord	-	3
8.	BNC Cable	-	1
9.	8-pin DIN Extension Cable	UI-5218	2

Recommended Items

ltem	Model	Quantity
850 Universal Interface	UI-5000	1
PASCO Capstone Software	UI-5400	1

Limited Warranty and Limitation of Liability

This Brolight product is free from defects in material and workmanship for one year from the date of purchase. This warranty does not cover fuses, or damage from accident, neglect, misuse, alteration, contamination, or abnormal conditions of operation or handling. Resellers are not authorized to extend any other warranty on Brolight's behalf. To obtain service during the warranty period, return the unit to point of purchase with a description of the problem.THIS WARRANTY IS YOUR ONLY REMEDY. NO OTHER WARRANTIES, SUCH AS FITNESS FOR A PARTICULAR PURPOSE, ARE EXPRESSED OR IMPLIED. BROLIGHT IS NOT LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL OR CONSEQUENTIAL DAMAGES OR LOSSES, ARISING FROM ANY CAUSE OR THEORY. Since some states or countries do not allow the exclusion or limitation of an implied warranty or of incidental or consequential damages, this limitation of liability may not apply to you.

Safety Information

WARNING: To avoid possible electric shock or personal history, follow these guidelines.

- Do not clean the equipment with a wet cloth.
- Before use, verify that the apparatus is not damaged.
- Do not defeat power cord safety ground feature.
- Plug into a grounded (earthed) outlet.
- Do not use the product in any manner that is not specified by the manufacturer.
- Do not install substitute parts or perform any unauthorized modification to the product.
- Line and Current Protection Fuses: For continued protection against fire, replace the line fuse and the current-protection fuse only with fuses of the specified type and rating.
- Main Power and Test Input Disconnect: Unplug instrument from wall outlet, remove power cord, and remove all probes from all terminals before servicing. Only qualified, service-trained personnel should remove the cover from the instrument.
- Do not use the equipment if it is damaged. Before you use the equipment, inspect the case. Pay particular attention to the insulation surrounding the connectors.
- Do not use the equipment if it operates abnormally. Protection may be impaired.
- When in doubt, have the equipment serviced.
- Do not operate the equipment where explosive gas, vapor, or dust is present. Don't use it under wet conditions.
- Do not apply more than the rated voltage, as marked on the apparatus, between terminals or between any terminal and earth ground.
- · When servicing the equipment, use only specified replacement parts.
- Use caution when working with voltages above 30 V AC rms, 42 V peak, or 60 V DC. Such voltages pose a shock hazard.
- To avoid electric shock, do not touch any bare conductor with hand or skin.
- Adhere to local and national safety codes. Individual protective equipment must be used to prevent shock and arc blast injury where hazardous live conductors are exposed.

• Special note: If a dangerous voltage is applied to an input terminal, then the same voltage may occur at all other terminals.

Electrical Symbols

Alternating Current
Direct Current
Caution, risk of danger, refer to the operating manual before use.
Caution, possibility of electric shock
⊥_ Earth (ground) Terminal
Protective Conductor Terminal
Chassis Ground
CE Conforms to European Union directives.
WEEE, waste electric and electronic equipment
Fuse
On (Power)
Off (Power)
In position of a bi-stable push control
Out position of a bi-stable push control

Installation and Maintenance

WARNING:

To reduce the risk of electric shock or damage to the instrument, turn the power switch off and disconnect the power cord before replacing a tube.

Replace the Argon Tube

- Use a flat-blade screwdriver to remove the two small screws that hold the back plate onto the argon tube enclosure.
- Use a small flat-blade screwdriver to pry the back panel off of the enclosure.
- Pull up on the elastic pressing spring and rotate it off the argon tube.
- Gently pull out the argon tube.
- Then, install a new tube and replace the elastic pressing spring.
- · Finally, close the case and replace the two small screws.
 - **Note**: The tube is a thin-walled, evacuated glass bulb. Handle with care! Do not expose the tube to mechanical stress or strain.

Argon Tube Specifications	
Filling gas	argon
Filament voltage	\leq 6.3 V DC
Accelerating voltage	\leq 100 V DC
Wave crest (or trough) number	6
Life span	\geq 2000 hours

Note: Replace the argon tube with the same type: Model SE-9645 Franck-Hertz Ar-Tube.

Fuse Replacement

The fuse is inside a tray. Open the cover to remove the fuse.

WARNING

To reduce the risk of electric shock or damage to the instrument, turn the power switch OFF and disconnect the power cord before replacing a fuse.

- Disconnect the power cord from the instrument.
- Open the fuse cover and remove the fuse. (The fuse is inside a tray. Use a small screwdriver or other tool to pry the tray open.)
- Replace the fuse(s). Use the same type of fuse (250 V T2A).
- · Reconnect the power cord and turn on the instrument.
- If the problem persists, contact Brolight Corporation for service.

Note: Replace the burned fuses with new fuses of the same type. (One spare fuse is included.)

Introduction

In 1914, James Franck and Gustav Hertz discovered in the course of their investigations an "energy loss in distinct steps for electrons passing through mercury vapor", and a corresponding emission at the ultraviolet line (λ = 254 nm) of mercury. As it is not possible to observe the light emission directly, demonstrating this phenomenon requires extensive and cumbersome experiment apparatus. They performed this experiment that has become one of the classic demonstrations of the quantization of atomic energy levels. They were awarded the Nobel Prize for this work in 1925.

In this experiment, we will repeat Franck and Hertz's energy-loss observations, using argon, and try to interpret the data in the context of modern atomic physics. We will not attempt the spectroscopic measurements, since the emissions are weak and in the extreme ultraviolet portion of the spectrum.

Principle of the Experiment

The Franck-Hertz tube is an evacuated glass cylinder with four electrodes (a "tetrode") which contains argon. The four electrodes are: an indirectly heated oxide-coated cathode as an electron source, two grids G_1 and G_2 and a plate A which serves as an electron collector (anode A). Grid 1 (G_1) is positive with respect to the cathode (K) (about 1.5 V). A variable potential difference is applied between the cathode and Grid 2 (G_2) so that electrons emitted from the cathode can be accelerated to a range of electron energies. The distance between the cathode and the anode is large compared with the mean free path length in the argon in order to ensure a high collision probability. On the other hand, the separation between G_2 and the collector electrode (A) is small. A small constant negative potential U_{G2A} ("retarding potential") is applied between G_2 and the collector electrode A opposes the motion of electrons to the collector electrode, so that electrons which have kinetic energy less than e• U_{G2A} at Grid 2 cannot reach the collector plate A. As will be shown later, this retarding voltage helps to differentiate the electrons having inelastic collisions from those that don't.

A sensitive current amplifier is connected to the collector electrode so that the current due to the electrons reaching the collector plate may be measured. As the accelerating voltage is increased, the following is expected to happen: Up to a certain voltage, say V_1 , the plate current I_A will

increase as more electrons reach the plate. When the voltage V is reached, it is noted that the plate current, I_A , takes a sudden drop. This is due to the fact that the electrons just in front of the grid G_2 have gained enough energy to collide inelastically with the argon atoms. Having lost energy to the argon atom, they do not have sufficient energy to overcome the retarding voltage between G_2 and collector electrode A. This causes a decrease in the plate current I_A . Now as the voltage is again increased, the electrons obtain the energy necessary for inelastic collisions before they reach the anode. After the collision, by the time they reach the grid, they have obtained enough energy to overcome the retarding voltage and will reach the collector plate. Thus I_A will increase. Again when a certain voltage V_2 is reached we note that I_A drops. This means that the electrons have obtained enough energy to have two inelastic collisions before reaching the grid G_2 , but have not had enough remaining energy to overcome the retarding voltage. Increasing the voltage again, I_A starts upward until a third value, V_3 , of the voltage is reached when I_A drops. This corresponds to the electrons having three inelastic collisions before reaching the anode, and so on. The interesting fact is that $V_3 - V_2$ equals $V_2 - V_1$, etc., which shows that the argon atom has definite excitation levels and will absorb energy only in quantized amounts.

When an electron has an inelastic collision with an argon atom, the kinetic energy lost to the atom causes one of the outer orbital electrons to be pushed up to the next higher energy level. This excited electron will within a very short time fall back into the ground state level, emitting energy in the form of photons. The original bombarding electron is again accelerated toward the grid anode. Therefore, the excitation energy can be measured in two ways: by the method outlined above, or by spectral analysis of the radiation emitted by the excited atom.

Figure 2 displays a typical measurement of the anode current, I_A , as a function of the accelerating voltage. As soon as $V_{G2K} > V_{G2A}$ the current increases with rising V_{G2K} . Notice that the current sharply decreases for a voltage U_1 and then increases up to U_2 , and then this pattern recurs. The interpretation of these observations is successful with the following assumptions:

- Having reached energy of about e•U₀, electrons can transmit their kinetic energy to a discrete excitement state of the argon atoms.
- As a result of the inelastic collision, they pass the braking voltage.
- If their energy is twice the required value, or 2 e•U₀, they can collide two times inelastically and similarly for higher voltages.
- As a matter of fact, a strong line can be found for emission and absorption corresponding to an energy of $e \cdot U_0$, the excitation energy of argon, in the optical spectrum (108.1 nm).

In figure 2, the resonance voltage is denoted by U_0 .

 $\mathbf{e} \cdot \mathbf{U}_0 = \mathbf{h} \mathbf{f} = \mathbf{h} \mathbf{c} / \lambda$

or

$$\mathbf{h} = \mathbf{e}\lambda\left(\frac{\mathbf{U}_{\mathbf{0}}}{\mathbf{c}}\right)$$

where e is the charge on an electron, h is Planck's Constant, and c is the speed of light.

Connect Cables and Cords

110 - 120 V or 220 - 240 V Please make sure that you select the right setting according to your AC _____ voltage level.

Note: Before connecting any cords or cables, be sure that all power switches on the Power Supplies and Current Amplifier are in the OFF position and all voltage controls are turned fully counterclockwise.

See the next page for numbered instructions about connecting cables and cords.

- 1. On the DC Current Amplifier, connect the special BNC-to-BNC cable between the port on the amplifier marked "INPUT SIGNAL" and the port on the Argon Tube Enclosure marked "µA".
- On Power Supply II, (SE-9644) connect the positive terminal of the 12 V DC output to the grid-like electrode labeled "G2" (red sockets) on the Argon Tube Enclosure (SE-9650) and connect the negative terminal of the 12 V DC output to the terminal labeled "A" (black sockets) on the enclosure.
- 3. On Power Supply II, connect the positive terminal of the **100 V DC** output on the power supply to the grid-like electrode labeled "G2" (red sockets) on the Argon Tube Enclosure and connect the negative terminal of the power supply to the terminal labeled "K" (black sockets) on the enclosure.
- 4. On Power Supply I (SE-6615), connect the positive terminal of the -4.5 +30 V DC output on the power supply to the grid-like electrode labeled "G1" on the Argon Tube Enclosure and connect the negative terminal of the power supply to the terminal labeled "K" (black sockets) on the enclosure,
- 5. On Power Supply I, connect the positive terminal of the 0 6.3 V DC output on the power supply to the red socket of the port labeled "FILAMENT" on the Argon Tube enclosure and connect the negative terminal of the power supply to the black socket of the "FILAMENT" port.
- Note: Before connecting the power cords, please check that the setting for the input voltage range (110 120 V or 220 240 V) matches the local AC voltage. For the two power supplies and the current amplifier, connect a power cord between the port on the back labeled "AC POWER CORD" and an appropriate electrical outlet.

DANGER:

High Voltage is applied to the Argon Tube. Avoid contact with any part of the body.

- Only use safety equipment leads (shrouded patch cords) for connections.
- Make sure that the power supplies and current amplifier are OFF before making the connections.
- Make sure that the power supplies and current amplifier are OFF before installing or replacing the argon tube in the Argon Tube Enclosure

Cables and Cords	Specification		
Power Cord	Length: 1.5 m, 16 A / 250 V		
Connecting Cable, Red (EM-9740)	Length: 0.85 m, 10 A / 300 V		
Connecting Cable, Black (EM-9745)	Length: 0.85 m, 10 A / 300 V		
BNC-to-BNC Cable	Length: 1.0 m, 1 A / 300 V		

Note: Replace the cables and power cords with the same type.

Tunable DC (Constant Voltage) Power Supply I

- Voltmeter: Displays voltage across the argon tube.
- Voltage Range Switch: Sets the voltage range as $-4.5 0 V (\square)$ or $-4.5 +30 V (\square)$.
- Power Switch: Turns the power to the instrument ON or OFF.
- Voltage Adjust: Sets the voltage across the argon tube.
- Output: Output power.
- Data Interface: Connect to the analog channels of the PASCO 850 Universal Interface.

Tunable DC (Constant Voltage) Power Supply II

- Voltmeter: Displays voltage across the argon tube.
- Voltage Range Switch: Sets the voltage range as 0 to 100 V (⊥⊥) or 0 to 200 V (□−) for the accelerating voltage.
- Power Switch: Turns the power to the instrument ON or OFF.
- Voltage Adjust: Sets the voltage for both voltage ranges.

- Output: Output power.
- Data Interface: Connect to the analog channels of the PASCO 850 Universal Interface.

DC Current Amplifier

- Power Switch: Turns the power to the instrument ON or OFF.
- Data Interface: Connect to the analog channels of the PASCO 850 Universal Interface.
- Current Range Switch: Sets the current range for the instrument's current amplifier (10⁻⁸ to 10⁻¹³ A).
- Signal Switch: Sets the signal to MEASURE (\square) or CALIBRATION (\square).
- Current Adjust: Sets the current through the instrument to zero.
- Ammeter: Displays the current through the argon tube.
- Input Signal: Input current signal.

Experiment Procedure 1

Adjust Operating Voltages

Note: Before switching on the power, be sure that all voltage controls are turned fully counterclockwise.

- 1. Connect all the cables and cords as shown in the section "Connect Cables and Cords" (page 7).
- 2. On the Tunable DC (Constant Voltage) Power Supply I, Tunable DC (Constant Voltage) Power Supply II, and the DC Current Amplifier, push in the Power Switch to the ON position.
- 3. On the DC Current Amplifier, turn the CURRENT RANGES switch to 10⁻¹⁰ A. To set the current amplifier to zero, press the SIGNAL button in to CALIBRATION. Adjust the CURRENT CALIBRATION knob until the current reads zero. Press the SIGNAL button to MEASURE.
- 4. On the DC (Constant Voltage) Power Supply I, set the Voltage Range switch to -4.5 +30 V. On Power Supply II, set the Voltage Range switch to 0 100 V.

NOTE: It is very important to allow the argon tube and apparatus to warm up for 15 minutes prior to making any measurements.

- 5. On Power Supply I, rotate the 0 6.3 V adjust knob until the voltmeter reads 3.5 V. This sets $V_H = 3.5$ V (Filament Voltage). Note: The Argon Tube Enclosure may have a different suggested filament voltage. If so, use it instead of 3.5 V.
- 6. On Power Supply I, rotate the -4.5 +30 V adjust knob until the voltmeter reads 1.5 V. This sets $V_{G1K} = 1.5$ V (the voltage between the first grid and the cathode)
- 7. Rotate the 0 12 V adjust knob until the voltmeter reads 10.0 V to set $V_{G2A} = 10.0$ V (Retarding voltage).
- 8. Rotate the 0 100 V adjust knob until the voltmeter reads 0 V. This sets $V_{G2K} = 0$ V (Accelerating voltage).
- 9. Remember, allow the argon tube and the apparatus to warm up for 15 minutes.
- 10. When you have finished the above steps, check that $V_H = 3.5$ V (Filament voltage), $V_{G1K} = 1.5$ V (the voltage between the first grid and cathode), and $V_{G2A} = 10.0$ V (voltage between the second grid and anode "retarding voltage"). If so, the equipment is ready to do the experiment. Note: These are suggested settings for the experiment, but other values could be tried. You can do the experiment by parameters that are marked on the Argon Tube Enclosure.

Manual Measurements

Note:

- During the experiment, pay attention to the output current ammeter when the voltage is over 60 V. If the ammeter's reading increases suddenly, decrease the voltage at once to avoid the damage to the tube.
- If you want to change the value of V_{G1K}, V_{G2A} and V_H during the experiment, rotate the "0 ~ 100 V" adjust knob fully counter-clockwise before making the changes.
- The filament voltage is tunable from 0 to 6.3V. If the anode output current is too high and causes the amplifier to overflow, the filament voltage should be decreased.
- As soon as you have finished the experiment, return the V_{G2A} voltage to 0 V to prolong the life of the argon tube.
- 1. Increase the accelerating voltage V_{G2K} by a small amount (for example, 1 V). Record the new accelerating voltage V_{G2K} (value read on voltmeter) and current I_A (read on "Ammeter") in Table 1:1. Continue to increase the voltage by the same small increment and record the new voltage and current each time in Table 1:1. Stop when the accelerating voltage V_{G2K} = 85V. (If the current I_A exceeds the range, reduce the filament voltage (for example, 0.1V) and start over again.)
- 2. Try to identify the "peak positions", i.e. watch for those values of the accelerating voltage V_{G2K} for which the current reaches a local maximum and begins to drop on further increase of the accelerating voltage. Take a few data points (V_{G2K} , I_A) around these peak positions and record them in Table 1:2. Try to identify the "valley positions", i.e. watch for those values of the accelerating voltage V_{G2K} for which the current reaches a local minimum and begins to rise on further increase of the accelerating voltage. Take a few data points (V_{G2K} , I_A) around these values of the accelerating voltage. Take a few data points (V_{G2K} , I_A) around these values of the accelerating voltage. Take a few data points (V_{G2K} , I_A) around these values positions and record them in Table 1:2.
- 3. Take sufficiently many voltage values so as to allow you to determine the positions of the peaks and valleys.

Table 1.1: Accelerating Voltage and Tube Current

V _{G2K} (V)					
I _A (x 10 ⁻¹⁰ A)					

Table 1.2: Peak and Valley Voltages

		V ₁	V ₂	V ₃	V ₄	V ₅	V ₆
Peak	V _{G2K} (V)						
positions	I _A (x 10 ⁻¹⁰ A)						
Valley	V _{G2K} (V)						
positions	I _A (x 10 ⁻¹⁰ A)						

Analysis

1. Plot the graphs of Current (y-axis) versus Voltage (x-axis).

- 2. Find the peak (or valley) positions which match the accelerating voltages labeled "V1, V2, V3, V4, V5, and V6".
- 3. Obtain the value of argon atom's first excitation potential (V_0) .

$$\mathbf{V}_{0} = \frac{(\mathbf{V}_{2} - \mathbf{V}_{1}) + (\mathbf{V}_{3} - \mathbf{V}_{2}) + (\mathbf{V}_{4} - \mathbf{V}_{3}) + (\mathbf{V}_{5} - \mathbf{V}_{4}) + (\mathbf{V}_{6} - \mathbf{V}_{5})}{5}$$

4. Calculate the value of Planck's Constant, h:

$$\mathbf{h} = \mathbf{e}\lambda\left(\frac{\mathbf{V}_0}{\mathbf{c}}\right)$$

where $e = 1.602 \text{ x } 10^{-19} \text{ C}$, $\lambda = 108.1 \text{ nm}$, and $c = 3 \text{ x } 10^8 \text{ m/s}$.

5. Calculate the percent difference between the experimental value and the accepted value ($h_0 = 6.626 \times 10^{-34} \text{ J} \cdot \text{s}$)

$$\Delta h = |(h - h_0) / h_0| \ge 100\% =$$

Questions

- 1. Should you use the positions of the peaks or of the valleys to determine the excitation energy? Or both? Explain.
- 2. Why are the peaks and valleys smeared out rather than sharp?
- 3. How precisely can you determine the peak/valley position? Explain and justify your estimates.
- 4. How would molecular contaminants in the tube affect your results?

Experiment Procedure 2

Using a PASCO Interface and Data Acquisition Software

Items Needed

Item*	Quantity
850 Universal Interface (UI-5000)	1
PASCO Capstone Software (UI-5400)	1

*See the PASCO web site at www.pasco.com for more information

Hardware Setup: Connect Cables and Cords

Note: Before connecting any cords or cables, be sure that all power switches on the Interface, Power Supplies, and Current Amplifier are in the OFF position and all voltage controls are turned fully counterclockwise.

- 1. Connect all the cables and cords between the argon tube enclosure and the power supplies and current amplifier.
- 2. Connect one 8-pin DIN Extension Cable (UI-5218) from the INTERFACE port on the DC Current Amplifier to ANA-LOG INPUT A on the Universal Interface (UI-5100).

- 3. Connect a second 8-pin DIN Extension Cable from the 0 100V / 0 200V INTERFACE port on Power Supply II to ANALOG INPUT B on the Universal Interface.
- 4. Turn ON the power for the Universal Interface, the power supplies, and the current amplifier.
- 5. On the DC Current Amplifier, turn the CURRENT RANGES switch to 10⁻¹⁰ A. To set the current amplifier to zero, press the SIGNAL button in to CALIBRATION. Adjust the CURRENT CALIBRATION knob until the current reads zero. Press the SIGNAL button to MEASURE.
- 6. On the DC (Constant Voltage) Power Supply I, set the Voltage Range switch to $-4.5 +30 \text{ V} (\underline{\ })$. On Power Supply II, set the Voltage Range switch to $0 100 \text{ V} (\underline{\ })$.

NOTE: It is very important to allow the argon tube and apparatus to warm up for 15 minutes prior to making any measurements.

- 7. On Power Supply I, rotate the 0 6.3 V adjust knob until the voltmeter reads 3.5 V. This sets $V_H = 3.5$ V (Filament Voltage). Note: The Argon Tube Enclosure may have a different suggested filament voltage. If so, use it instead of 3.5 V.
- 8. On Power Supply I, rotate the -4.5 +30 V adjust knob until the voltmeter reads 1.5 V. This sets $V_{G1K} = 1.5$ V (the voltage between the first grid and the cathode)
- 9. Rotate the 0 12 V adjust knob until the voltmeter reads 10.0 V to set $V_{G2A} = 10.0$ V (Retarding voltage).
- 10. Rotate the 0 100 V adjust knob until the voltmeter reads 0 V. This sets $V_{G2K} = 0$ V (Accelerating voltage).
- 11. Remember, allow the argon tube and the apparatus to warm up for 15 minutes.
- 12. When you have finished the above steps, check that $V_H = 3.5 \text{ V}$ (Filament voltage), $V_{G1K} = 1.5 \text{ V}$ (the voltage between the first grid and cathode), and $V_{G2A} = 10.0 \text{ V}$ (voltage between the second grid and anode "retarding voltage"). If so, the equipment is ready for the experiment. Note: These are suggested settings for the experiment, but other values could be tried. You can do the experiment by parameters that are marked on the Argon Tube Enclosure.

Software Setup

- 1. Start the PASCO Capstone software.
- 2. The current is a very small number, so to make the current to appear as a number between zero and 100 on the graph, create a calculation:
- Electron Current = [Current, Ch A (A)] x 10^10 with units of (x 10^-10 A)
- 3. Create a graph of "Electron Current" vs. Voltage.
- 4. Create a digits display of the Voltage. This will clearly show you the accelerating voltage so you can monitor it to make sure that you do not exceed 85 V.
- 5. Create a table and create Run-tracked User-Entered Data called **Peak Voltage** with units of (V).
- 6. In the second column of the table, create a calculation:
- Diff between Peaks = diff(1,[Peak Voltage (V)]) with units of (V)

(This calculation calculates the voltage difference between adjacent current peaks.)

- 7. Add a column and create Run-tracked User-Entered Data called Trough Voltage with units of (V).
- 8. In the fourth column of the table, create a calculation:

• Diff between Peaks = diff(1,[Trough Voltage (V)]) with units of (V)

(This calculation calculates the voltage difference between adjacent current troughs.)

9. In the table, turn on the mean and standard deviation.

Recording Data

- 1. Make sure the accelerating voltage V_{G2K} is zero.
- 2. After the filament has warmed up for about 15 minutes, click **Record** and slowly increase the accelerating voltage (take about two minutes). Do not exceed 85 V.

CAUTION: While you are increasing the voltage, if you see the current suddenly increase, immediately return the voltage to zero and decrease the filament voltage slightly, Wait for a few minutes for it to cool, and repeat the recording.

Analysis

- 1. Using the coordinates tool on the graph, find the voltage of each of the peaks and troughs and record them in the table in the **Peak Voltage** and Trough Voltage columns respectively.
- 2. The voltage differences between adjacent peaks and the voltage differences between adjacent troughs will be calculated automatically in the table. Record the **mean** and **standard deviations** for the differences. The standard deviations give the uncertainties in the difference measurements.
- 3. Use the mean voltage difference (V_0) to calculate the value of Planck's Constant, *h*:

$$\mathbf{h} = \mathbf{e}\lambda\left(\frac{\mathbf{V}_0}{\mathbf{c}}\right)$$

where $\mathbf{e} = 1.602 \text{ x } 10^{-19} \text{ C}$, $\lambda = 108.1 \text{ nm}$ and $\mathbf{c} = 3 \text{ x } 10^8 \text{ m/s}$. The answer will be in J•s.

- 4. Calculate the percent difference between the experimental value and the accepted value ($h_o = 6.626 \times 10^{-34} \text{ J} \cdot \text{s}$).
- 5. Estimate the uncertainty in the experimental value of Planck's Constant using the uncertainty in the voltage difference.

Appendix A: General Specifications

Item	Description
Supply voltage:	110 – 120 V or 220 – 240 V
Supply voltage fluctuations:	±10%
Fuse protection for inputs:	250 V T2A
Display:	3-1/2 or 4-1/2 digit display
Using site:	Indoor use
Temperature:	Operating: 0°C to 40°C, Storage: -20°C to 50°C
Relative humidity:	Noncondensing < 10°C, 90% from 10°C to 30°C, 75% from 30°C to 40°C
Pollution degree:	2
Certifications	CE
Safety compliance:	IEC/EN 61010-1
Overvoltage category:	11
Degree of protections:	IP20
Normal energy protection:	5 J

Item	Description
Tunable DC (Constant Voltage) Power Supply I	0~6.3 V DC, I ≤1A (ripple < 1%), 3.5 Digit Display; -4.5~0 V DC / -4.5~30 V DC (ripple < 1%) (Two ranges), I ≤ 10mA, 4.5 Digit Display;
Tunable DC (Constant Voltage) Power Supply II	0~12 V DC, I \leq 1A (ripple < 1%), 3.5 Digit Display; 0~100 V DC / 0~200 V DC (ripple < 1%) (Two ranges), I \leq 30mA, 3.5 Digit Display
DC Current Amplifier	Current range: 10^{-8} ~ 10^{-13} A, in six ranges, 3.5 Digit Display; Zero drift $\leq \pm 1\%$ of full range reading in 30 minutes at the range of 10^{-13} A (after a 20 minute warm-up)
Argon Tube	Filling gas: argon Filament voltage: $\leq 6.3 \text{ V DC}$ Accelerating voltage: $\leq 100 \text{ V DC}$ Wave crest (or trough) number: 6 Life span: ≥ 2000 hours